## A deep learning approach to private data sharing of medical images using conditional generative adversarial networks

Hanxi Sun, Jason Plawinski, **Sajanth Subramaniam**, Amir Jamaludin, Timor Kadir, Aimee Readie, Gregory Ligozio, David Ohlssen, Mark Baillie, Thibaud Coroller







A look at modern foundation models



# **T**+% Image generation

# DALL-E



## A look at modern foundation models



Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, & Dario Amodei. (2020). Scaling Laws for Neural Language Models.

# What about the *medical* domain?



### Problem

Use of medical data often restricted due to **privacy concerns** 

### **Potential solutions**

# $\bigcirc$

## Anonymization

Remove or modify potentially identifying features from the data

# **Federated learning**

75

Training of a centralized model by multiple parties without sharing data



## **Synthetic data**

Generate synthetic data that closely models the original dataset without revealing patient information

# **Case study: MRI images** of vertebral units (VUs)



MRIs of VUs from clinical COSENTYX® study on Ankylosing spondylitis (AS) , ~10'000 samples



### **Generative adversarial network (GAN)**

**Idea:** Let two neural networks compete with each other in creating and identifying fake images.



## Results



### **Evaluation**



Compare UMAP embeddings between real and synthetic samples

### **Evaluation**



Compare UMAP embeddings between real and synthetic samples



Train two separate classifiers, one

# on real and one on synthetic data, and compare performance

### Predict VU position

### **Privacy evaluation**



### Pairwise attacks

Can we tell whether a given sample was used during training of the model?

### **Privacy evaluation**





Synthetic (red/orange) and train (blue dots) samples in embedding space.

### **Pairwise attacks**

Can we tell whether a given sample was used during training of the model?

### **Distribution attacks** Can we identify clusters of synthetic images around real images?

### Limitations



No privacy

guarantee



23

Incorporate differential privacy (DP) methods, see e.g. [1]

Explore diffusion models for diverse, high-quality images, see e.g. [1]

## Conclusion

- We explored synthetic data as a potential remedy for privacy concerns in the medical domain
- Deep learning methods like **GANs** can create realistic synthetic images without replicating patients from the original distribution
- Avenues for improvement include better privacy guarantees and more scalable model training

### **Backup: Follow-up work**

**Idea:** Extend approach to multi-modal data (clinical and imaging)



## **Backup: Optimizing a GAN**

### **Discriminator loss**

 $E_x[log(D(x))] + E_z[log(1 - D(G(z)))]$ 

where D(x) is the probability that x (real image) is classified as real. The variable z denotes the Gaussian noise vector.



The Generator is trained to *minimize* this loss.

### **Backup: Auxiliary Classifier GAN**

**Idea:** Introduce conditioning on class variable

